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Abstract Research on validation and verification of requirements specifications
has thus far focused on functional properties. Yet, in embedded systems, func-
tional requirements constitute only a small fraction of the properties that must
hold to guarantee proper and safe operation of the system under design.
In this paper we try to shine some light on the kinds of requirements occurring
in current embedded systems design processes. We present a set of categories
together with real-life examples. For each of them, we briefly describe possible
approaches towards formal modeling and automated verification of the respective
properties.

1 Introduction

Control systems deployed in commercial aircrafts, emergency systems installed in nu-
clear power plants, remote-controlled surgery robots in hospitals, and automated brak-
ing assistants in automobiles are just a few examples of modern safety-critical systems.
During the last decades, humans are increasingly poised to hand the responsibility for
their lives over to electronic systems.

The growing complexity of these systems, and the fact that a failure of a single sub-
system may have fatal consequences for the users, forces the industry to reconsider the
underlying development process to obtain products of the required quality.

The large scale of the systems inevitably requires a great number of stakehold-
ers. Communication of needs and constraints is thus fundamentally complex, both be-
cause of the sheer amount, and even more because of different—domain specific—
vocabularies. Ambiguities in early specifications (Figure 1) then yield costly changes at
later project phases.

To overcome such issues, requirements based approaches (cf. [1]) are used in sys-
tems development. Requirements describe properties of a system. They give specifica-
tions of varying precision of the system to be developed, and later provide means to
judge whether the product meets the goals.

The IEEE Standard 830 [2] lists desirable characteristics of requirements: (a) cor-
rect, (b) unambiguous, (c) complete, (d) consistent, (e) ranked in importance and/or
stability, (f) verifiable, (g) modifiable, and (h) traceable. Further, each requirement shall
be uniquely identified.
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Figure 1. Well known misunderstandings in a project

Requirements Engineering in Avionics Industry

Because of the background of the authors, our view on the development process is
inherently biased towards avionics industry. The term “avionics” is a synthesis of avi-
ation and electronics. Starting in the early 1970s, the number of systems in an aircraft
has grown in orders of magnitude. Thus it was necessary to emphasize integration of
subsystems. It was primarily driven by the change from mechanical instruments to elec-
tronic instruments. This gave birth to avionics industry. Nowadays more than half of the
budget of a new aircraft is spent on avionics systems.

Diehl Aerospace is one of the largest avionics suppliers in Europe. We deliver sys-
tems for Airbus and Boeing. Typical products are control systems for flaps, display
systems, and cabin systems.

The avionics industry has been successful since around 30 years in developing
highly reliable systems. Traveling by aircraft is safer than in any other vehicle. This
might be due to a good understanding of the typical problems that can occur during a
flight, but also because of the huge amount of money that is spent during the analysis
phases of each newly developed program. As we expect air traffic to triple in the next
20 years, sustaining the quality and safety becomes a huge challenge for the existing
infrastructure and new systems will need to be developed.

To guarantee quality and safety, regularities and guidelines controlled by official
authorities must be adhered to. At systems level this is the international standard SAE-
4754 [3], and for the software sub-systems DO-178B / ED-12B [4] applies. All guide-
lines are built on consensus of all players in industry. Most of these standards are based
on older international standards like [5]. Further, many manufacturers compile internal
standards based on existing ones to tailor them towards their typical projects (cf. [6]).

As we focus on software in this paper, we are primarily concerned with the ob-
jectives laid out in DO-178B / ED-12B. It delineates verification constraints to detect
and report errors that may have been introduced during the software development pro-
cesses. Software verification objectives are satisfied through a combination of reviews



and analysis, the development of test cases and procedures, and the subsequent execu-
tion of those test procedures.

Contribution In all such assessments, requirements specified earlier are checked. Not
only the ability to assess varies largely among the set of requirements, but also the
techniques used to describe the requirements are non-uniform. In this paper we we give
a taxonomy of the kinds of requirements typically found in avionics system design,
and take a short glance at possibilities of verifying that a requirement is met by an
implementation. We therefore wade through the jungle of requirements along several
paths: Requirements are first grouped according to their occurrence in the development
process in Section 2.1, and then following our categorization in Section 3. We give
examples from our domain to illustrate the abstract terms.

2 Requirements in the Design Process

Abstraction is a key concept in dealing with large scale system designs. Successive
refinement keeps complexity local and manageable. Requirements follow this schema
and occur at all levels of abstraction. For example, requirements coming from the cus-
tomer are very high level and implementation independent, whereas the requirements
for a specific software module are as detailed as necessary to directly derive source code
based on them.

2.1 Hierarchy of Requirements

In Figure 2 the hierarchy of requirements is illustrated as a pyramid. The top level
process in the aircraft development cycle includes the identification of aircraft functions
and the requirements associated with these functions ([3] §5.1). As a result the purchaser
technical specification (PTS) is the first document that describes the need of a new
program. Each of the potential suppliers must explain to the purchaser how they intend
to satisfy the requirements.

High Level Requirements Specifications given in the PTS are also known as high level
requirements (HLR). These are then refined to more detailed requirements. It is up to
the systems design department to decide which of the requirements to allocate to a
software modules or to a hardware modules.

Low Level requirements The refinements of HLRs are called low level requirements.
These describe software and hardware components in further detail. In the implemen-
tation phase, the low level requirements will be directly linked to parts of the system,
i.e., source code or software architecture artifacts.

Derived Requirements The class of derived requirements contains all specifications
that do not stem from any design decision and thus cannot be traced backwards the re-
quirements hierarchy. They are, however, essentially linked towards lower level require-
ments. As an example, consider the use of a specific scheduler (derived requirement),
which dictates the least possible sampling rate (low level requirement).
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2.2 Assessment of Requirements

Requirements present the necessary conditions for quality and safety. Achievement, and
thus the sufficient conditions thereof, must be checked in all phases of systems design.
Therefore several principal processes of assessment are linked to requirements, which
are detailed next. An overview of all activities in the development process is given in
Figure 3.

Validation In avionics, [3] §7 defines the process of validation as follows:

Validation of requirements and specific assumptions is the process of ensuring
that the specified requirements are sufficiently correct and complete so that
the product will meet applicable airworthiness requirements. Validation is a
combination of objective and subjective processes.

Thus, in Figure 3, the arrows labeled “validation” are drawn backwards to preceding
phases. In each phase, all requirements must be validated against the requirements of
the previous phases before a project can proceed.

Traceability The key to validation of requirements is traceability [7], i.e., the existence
of links between requirements, with the exception of derived requirements, as laid out
in Section 2.1. Traceability enables later validation of the entire design and guaran-
tees correspondence of the customer’s high level requirements down to implementation
details. DO-178B / ED-12B [4] §5.1.3 states this as follows:
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Figure 3. The V-Model

Each system requirement allocated to software should be traceable to one or
more software high-level requirements.

Verification While validation and traceability are only concerned with requirements
themselves, verification links requirements and implementation. It is the process of
assessing correctness of the implementation according to given requirements derived
during analysis phase [3] §8.

Because of the complexity of requirements involved in large scale systems design,
this calls for tool support (cf. [8]). While this is available using tools like Telelogic’s
Doors and Rhapsody, and Mathworks’ MATLAB, qualification as required by DO-
178B / ED-12B restricts the set of tools applicable in a DO-178B / ED-12B conforming
process.

Qualification of a tool is needed when processes of DO-178B / ED-12B are elim-
inated, reduced or automated by the use of a software tool without its output being
verified. Only deterministic tools may be qualified, that is, tools which produce the
same output for the same input data when operating in the same environment. The tool
qualification process may be applied either to a single tool or to a collection of tools.

Formal Methods Proper formal verification requires the use of formal methods, both
in requirements specification and in the process of verification itself. Further, [3] states:

Any attempt to justify that a complex or highly integrated system is sufficiently
error free, solely by means of testing, quickly becomes impractical as the sys-
tem complexity increases.



DO-178B / ED-12B §12.3.1 explicitly states that formal methods may be applied to
software requirements that (a) are safety-related, (b) can be defined by discrete mathe-
matics, and (c) involve complex behavior, such as concurrency, distributed processing,
redundancy management, and synchronization.

Current considerations for the successor of DO-178B / ED-12B take further formal
methods into account. This means that future avionic programs can and/or must benefit
from the power of mathematical techniques for validation and verification.

Nevertheless, there is a certain gap in practical applicability. In general, the benefits
of formal methods are well acknowledged in avionics industry and several ongoing
projects work on the introduction of related tools. From a system engineers perspective,
however, there is a hurdle of fear to be overcome. The anxiety is twofold: First, a loss of
control because of the involved complexity and lack of understanding is feared. Second,
costs have not been fully understood, not even investigated, yet. Therefore, acceptance
of formal methods is still lacking in many areas.

3 Categorizing Requirements

In the following we try to establish a sensible taxonomy for requirements found in
real avionics projects. We also list possibilities for formal modeling and verification
of the respective requirements. These listings will emphasize some gaps between the
often idealized academic view and industrial requirements found in our projects. The
examples of requirements are taken from an assessment of six recent projects conducted
by Diehl Aerospace:

– The Onboard Airport Navigation System (OANS) for the A380
– The Doors and Slides Control System (DSCS) for the A350
– The Doors Control and Management Unit (DCMU) for the A380
– The Smart MultiFunction Display for the NH90 (SMD88)
– The Loader Software for the A400M
– The Display System of for Sikorsky S76

To avoid issues with intellectual property, however, in the given examples we have
replaced the original names referring to these projects by MODULE, SYSTEM, etc.

3.1 Towards a Taxonomy

Obtaining a common taxonomy has proved to be very difficult. Even in the projects an-
alyzed there were inconsistencies and heterogeneous categories. We decided to choose
the main categories proposed by [9] and consider all other categories as sub-categories
that can be assigned to one main category. The main categories are:

– Functional
• behavior of the system
• inputs, outputs and the functions it provides to the user

– Non-Functional
• express attributes of the system



• attributes of the environment
• usability
• reliability
• performance
• supportability

– Design Constraints
• impose limits on the design of the systems
• do not affect the external behavior of the system
• must be fulfilled to meet technical, business or contractual obligations

To contrast some current trends, we will focus on non-functional requirements and
design constraints in this document. Functional properties are already well supported by
several modeling toolkits. The verification then focuses on simulation-based techniques,
but formal methods like model checking [10] are in use as well.

Our focus on non-functional properties is also due to the fact that non-functional
requirements are more generic than application-specific functional properties. Addi-
tionally, the ratio between functional and non-functional requirements in the programs
under consideration was significantly towards the non-functional requirements (approx-
imately 70 percent).

3.2 Non-Functional Requirements

Non-functional requirements are also known as qualities of a system. We define non-
functional requirements as the set of properties specifying in detail how to perform the
intended functionality, in contrast to functional properties that state what the system
under scrutiny shall do.

Safety Requirements We refer to safety as described in [3]:

Safety is defined as the state in which risk is lower than the boundary risk.
The boundary risk is the upper limit of the acceptable risk. It is specific for a
technical process or state.

Safety requirements should be determined by conducting a functional hazard assess-
ment consistent with the processes in [11]. Safety can be considered as the most im-
portant aspect in avionics systems. Even though closely related, the security aspect cur-
rently is under consideration, but has less impact. This will change due to the fact that
a system that is not secure cannot be safe (due to malicious persons). We distinguish
qualitative and quantitative safety, as defined by [6]:

Qualitative Safety is the compliance with requirements associated with hazard
reduction principles, (common cause failure avoidance, requirement for segre-
gation or fail safe at item of equipment level, requirements for particular type
of function, monitoring, type of failure detection, requirement associated with
components, requirement of Development Assurance Level, etc.).

Quantitative Safety is the compliance with requirements for occurrence rate as-
sociated to particular functioning mode or to particular mal-functioning reper-
cussions (failure conditions at item of equipment level).



We consider the following examples as representatives of safety requirements typically
occurring in our projects:

Req 1 Neither run-time errors, nor non-deterministic constructs the consequence of
which includes processor halt, nor data corruption, nor security breaches, shall remain
in the software.

Req 2 The code in use shall assure that no undesired or unscheduled events can be
generated by the software itself.

Formal correctness according to such requirements may be shown through static
analysis [12] or model checking [10]. Both approaches may be fully automated, but
require specifications to be expressed using specific logics and implementations to be
translated or rewritten. To make the specification accessible to the system engineer,
approaches such as SALT [13] may be followed. Recently, software model check-
ing [14,15,16] has emerged as a sub-discipline of model checking, where implementa-
tions provided as C or Java code may be checked directly. Specifications may be given
within the source code, using assertions and dedicated labels. The effective applicabil-
ity of model checking depends upon the expressibility and availability of requirements
in the specification dialect in use. We will, in the following, refer to model checking
as one possible approach in several requirement categories, but note the dependency on
usable formal specifications.

At this point it should be noted that the term safety is used for a specific class of
specifications in this community. While at an abstract level qualitative safety may be
expressed using safety properties (as used in formal verification), this does not hold for
all examples of requirements listed here, as seen below.

Further formal and semi-formal techniques include automated and interactive theo-
rem proving [17,18], Simulation [19], and Testing [20,21]. Most notably, both simula-
tion and testing can be performed without any explicit specifications at hand and may
thus see frequent use in development processes; but conversely, guarantees of correct-
ness are a lot harder to obtain there.

In all of the above listed approaches, scalability to large scale systems is still an is-
sue. Furthermore, purchaser and supplier must establish a level of trust that verification
has been applied [22].

Req 3 The safety relevant items/functions should provide adequate isolation; i.e., fail-
ure of one component/sub-function shall not cause a failure of another one.

Req 4 It shall be demonstrated where practical that all possible combinations of input
signals independent of their sequence will not lead to abnormal system operation or
status indication.

Requirements describing interaction between components may be formally mod-
eled using interface automata [23], or in certain cases also using type- and effect sys-
tems [24]. Whereas the latter has seen frequent practical applications [25], interface
automata have not been widely adopted in industry thus far.

Req 5 Inadvertent activation of the MODULE shall be less than 1× 10−5.



Req 6 The SYSTEM equipment shall be designed to minimize the potential for human
errors that would significantly reduce safety.

Whenever requirements do not fully prohibit errors, but instead constrain error rates
by certain bounds, probabilistic models [26,27] and failure mode and effect analysis
(FMEA) [28] is called for. This may be combined with model checking [29,30].

Req 7 Special care shall be taken by the supplier and the purchaser to avoid display
of ambiguous and/or meaningless information and messages.

Even though clearly a safety requirement, the lack of metrics for such a requirement
make the application of formal methods impossible in Req. 7.

Reliability Requirements Reliability is the probability that an item will perform a
required function under specified conditions, without failure, for a specified period of
time [5].

Req 8 The possibility of common mode faults that significantly reduce the reliability
should be avoided.

Req 9 The reliability of monitoring functions shall be better (at least one order of mag-
nitude) than the reliability of the corresponding monitored systems.

The aspect of availability is closely tied to reliability. Availability is the “probability
that an item is in a functioning state at a given point in time [6]” or the “Continuity of
function [3] §5.2.1”. Since some aircraft systems are required to perform a safe landing
(e.g., the primary flight display in the cockpit) they have very high availability require-
ments. Example requirements for availability are:

Req 10 The equipment should continue to operate correctly and continue to meet the
safety requirements when subjected to several simultaneous fault conditions.

Req 11 Total loss of the MODULE functions shall be less than 1× 10−6.

Both, reliability and availability requirements may be modeled and checked using
FMEA techniques and probabilistic systems, as detailed for Req. 5 and 6. It shall be
noted, however, that for software systems numbers analogous to MTBF (mean time
before failure), which constitute the core of assessment in hardware systems, have not
been established yet. Further, probabilistic reasoning generally is applied on abstract
models, and not on an effective implementation.

Performance Requirements Performance requirements define attributes of the func-
tion or system that make it useful to the aircraft and the customer. In addition to defining
the type of performance expected, performance requirements include function specifics
such as accuracy, fidelity, range, resolution, speed and response time [3] §5.2.2.3. This
means that performance requirements do not cover only the aspect of processing speed,
but also consider operational aspects and usability. Nevertheless, the worst case exe-
cution time (WCET) is often assessed during requirement analysis and has to demon-
strated on the final product.



Req 12 If the mechanism has no strictly predictable time behavior, as e.g., main loops
applying polling mechanism, additional design precautions and verification measures
shall be taken to fulfill the real time requirements of the system.

It should be noted that in real-time systems time likely affect proper function, and
thus must also be considered to be a functional requirement in some cases:

Req 13 The maximum response time between MODULE commands available on NET-
WORK receiver and availability on NETWORK transmitter shall not exceed 50ms.

Req 14 The MODULE shall draw the reference format in a maximum time of 20 ms.

Execution time analysis has traditionally been based on informal testing of the sys-
tem under scrutiny on the effective target platform or using a simulator of the plat-
form [31,32]. Formalizations of testing based approaches are presented in [33]. Safe
upper bounds on WCET may be computed using static analysis [34].

Examples of performance requirements not related to execution time are:

Req 15 The SYSTEM shall ensure that A/C position accuracy is not degraded by more
than 0.5 m.

Req 16 The MODULE shall process only a single operation at a time.

Again, probabilistic models and (probabilistic) model checking may be applied. As
above, the translation of Req. 15 and 16 to specifications usable in model checking may
be difficult and is very specific to the techniques used in the implementation. If it is
applicable, however, the specifications used in model checking may become part of the
software model. This would cater for support within the software engineering process,
which is essential in cases where timing behavior affects proper function (see above).

Physical and Installation Requirements We consider two sub-categories of physical
requirements: environmental and equipment specific. The former deal with the loca-
tion and surroundings of the avionics system, which is located in a special room called
avionics bay. This room has an air conditioning system available that produces an op-
timal climate for electronic components. In case the air conditioning system fails, the
electronic equipment has to perform the functionalities for a certain amount of time
without degrading. Another problem arises when the air conditioning is powered down
and the aircraft is parked in a hot location. Thus temperatures in the avionics bay can
climb up to 80◦C. Even in this situation the equipment has to perform its tasks after
power up without problems.

One of the issues coming up recently in avionics is the single event upset (SEU).
With a higher integration of electronic circuits the probability of a neutron hitting a
memory cell has increased. Especially for aircrafts flying at high altitudes this has be-
come a real issue. To guarantee safe operations some measures have to be taken.

Req 17 The hardware and software implementation solutions shall consider the possi-
bility of atmospheric radiation effect. E.g., SEU (single event upset) and MBU (multiple



bit upset, specifically MBUs leading to single word multiple upset) due to particle en-
vironment (radiations as for example: neutrons, protons, heavy ions, etc.) at high flight
altitude (see also ABD0100.1.2 §4, also applicable for MBU).

Both at software and hardware level (using models of the processing units), model
checking and other formal methods listed for safety requirements may be applied. Spec-
ifications, however, will be highly involved and must be tailored towards each imple-
mentation. A more generic method would thus be desirable.

Req 18 Each equipment of the SYSTEM shall be compliant with the conditions speci-
fied in document RTCA/DO-160 §13 “Fungus Resistance” with category depending on
the component’s installation location.

Equipment specific requirements deal with all physical onboard pieces. Each piece
of equipment adds up to the total weight of an aircraft. The airlines demand an effi-
cient fleet and therefore the aircraft manufacturers try to minimize weight and power
consumption on every single component.

Req 19 The maximum weight of the complete SYSTEM shall be less than 35 kg.

Req 20 The maximum power consumption of the system/equipment shall be 80 VA.

Mathematical modeling of Req. 18–20 may be based on computer aided design
(CAD) tools, possibly with specific annotations. Statistic analysis of the modules in
each design then yield the desired numbers. This technique is referred to as computer
aided engineering (CAE) and tool support is widely available.

Maintainability Requirements In [5] maintainability is defined as follows:

Maintainability is the capability of the [. . . ] product to be modified. Modifica-
tions may include corrections, improvements or adaptions of the software to
changes in environment, and in requirements and functional specifications.

This category includes scheduled and unscheduled maintenance requirements, and any
links to specific safety related functions. Factors such as the percent of failure detec-
tion or the percent of fault isolation may also be important. Provisions for external test
equipment signals and connections should be defined in these requirements [3] §5.2.2.5.

Req 21 The supplier shall comply with ABD0100.1.14 and GRESS module 1.8 for Ob-
solescence Management requirements.

Req 22 Fault tolerance principles or components intrinsic reliability shall be adopted
where appropriate to achieve operational reliability targets and minimizes line mainte-
nance work.

Req 23 SYSTEM software in-field loading shall not exceed 15 minutes.

At best, annotated CAD models or module lists may be used to check such require-
ments. Maintainability, however, essentially involves business processes and thus would
require formal models of the development processes as well.



3.3 Design constraints

Design constraints can be considered as special non-functional requirements. In fact,
these requirements restrict the designer in choosing their architecture. Although require-
ments should be implementation independent, these special requirements are often used
to enforce a certain design to conform with other developments. Design constraints are
usually found in the lower level requirements specifications.

Architectural Requirements Architectural requirements cope with the structure of
a software module, and the way components are tied together. In the last years, the
architecture of a system has become more and more important. Since most software
systems are part of a larger system, interface design becomes crucial, and the chosen
structure must be easily integrated into the next level of abstraction.

Req 24 Software modularity shall be considered in order to improve the efficiency of
future function evolutions.

Req 25 A modular programming style with clear predefined module interfaces shall be
introduced in the operational software in order to layer the whole software package in
a hardware dependent part and in a hardware independent part.

Req 26 Functional independent software parts shall be segregated in different software
modules.

Req 27 The SYSTEM shall be able to support slight modifications with a minimum
impact on the software and without needing a new architecture definition.

Req 28 The SYSTEM function software shall be designed to be highly re-usable and
to optimize hardware/software independence. In particular, the software design shall
ensure:

– Independence of the SYSTEM functions related to the aircraft environment (such as
HMI or I/O functions).

– Independence of the different SYSTEM software functions between themselves to
ensure efficient future evolutions of these functions.

– Independence of the SYSTEM software related to the hardware (for portability on
PC host unit).

Req 29 The breakdown of the software shall be the same as the one used by the pur-
chaser to produce the application detailed specification. To achieve this objective a
procedure shall be mutually defined so that the purchaser specification integrates the
supplier’s wishes.

From a formal point of view, Req. 24–29 describe syntactic properties of the im-
plementation. Checking such specification thus is tied to the languages and modeling
formalism used in the implementation. Further, metrics to measure progress and fulfill-
ment of the requirements must be defined (cf. [35]).



Development Requirements This class of requirements is also referred to as coding
guidelines. Most important are those requirements that restrict the usage of dynamic
memory allocation. Almost all of the projects under analysis contained one of these
requirements.

Req 30 The use of pointers is allowed provided the supplier applies specific coding
standard rules and review check lists to restrict and manage its use. These rules shall
be agreed upon by the supplier and the purchaser, shall forbid the dynamic memory
allocation, and shall be applied for the new software and C++ reused software.

Req 31 Features with dynamic run-time behavior shall be avoided. No dynamic objects
shall be created or destroyed during run-time.

Req 32 The MODULE shall not use dynamic memory allocation. All the memory shall
be allocated at startup. The update by copy of the pre-allocated memory is allowed but
the boundaries shall be checked.

Other development requirements are:

Req 33 The policy for the intended use of IEEE floating point computation shall be
described in the Plan for Software Aspects of Certification (PSAC) and detailed in Soft-
ware Design and Code Standards.

Req 34 The instrumented code shall only be used for demonstration of structural cov-
erage, timing behavior, etc. Subsequently, the target executable object code shall be
compiled and linked from the non-instrumented source code. Requirements based test-
ing shall be repeated at the same level of testing and documented for the non-instru-
mented software package to demonstrate equivalence of functional and runtime-behav-
ior for both instrumented and non-instrumented code.

Req 35 For validation purposes, the equipment shall allow to simulate internal failure.

An analysis of approaches towards formal verification yields three groups here: (i)
Static properties of source code. Here, syntactic checks as proposed for architectural
requirements apply. (ii) Dynamic properties of the implementation. Model checking
and static analysis may be used, as suggested for Req. 1. (iii) Business process related.
Formal methods at software level do not apply.

HW/SW Interface Requirements

Req 36 If the status returned by a MODULE register access function call is not RE-
SULT OK, then an application error shall be raised.

This reachability property is best modeled and verified using model checking tools.
Even though it may involved interaction with hardware, abstract models enable check-
ing of the combined system.

Req 37 The software design shall not compromise the hardware failure tolerance.



The lack of metrics makes the formal analysis of such a requirement infeasible.
Establishing appropriate metrics would be highly desirable, however, and enable prob-
abilistic modeling and analysis of such requirements.

Req 38 If the supplier uses the cache memory of a processor, they shall demonstrate as
part of the verification plan the deterministic behavior of their solution.

Req 39 Usage of special software dependent resources (e.g., usage of CPU-registers
for special purposes or cache memory) shall be justified and mentioned within the Soft-
ware Accomplishment Summary.

Req. 38 and 39 involve parts of the business process and thus cannot be formally
checked at the implementation level.

4 Conclusions

Requirements form the basis of all systems developments processes in avionics indus-
try. The large scale systems, however, yield a vast amount of requirements that must
be managed and communicated. Based on our ongoing projects, we have presented a
taxonomy to categorize the occurring requirements.

Focusing on non-functional properties and design constraints, we have given a set
of examples of effectively occurring requirements and tried to elaborate formal means
of verifying the respective properties.

The list of requirements and possibly applicable formal methods emphasizes the gap
between an idealized mathematical model and practical applicability in an industrial
context. While we do acknowledge the progress in fundamental research, we also hope
that our work stimulates the development of tools that can be applied in our industrial
context to further improve quality and safety in airborne traffic.
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